Copied to
clipboard

G = C32.CSU2(𝔽3)  order 432 = 24·33

The non-split extension by C32 of CSU2(𝔽3) acting via CSU2(𝔽3)/Q8=S3

non-abelian, soluble

Aliases: C32.CSU2(𝔽3), Q8⋊C9.C6, Q8.D9⋊C3, C6.1(C3×S4), (C3×C6).1S4, Q8.(C9⋊C6), (Q8×C32).5S3, C2.2(C32.S4), Q8⋊3- 1+2.C2, C3.1(C3×CSU2(𝔽3)), (C3×Q8).1(C3×S3), SmallGroup(432,243)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C32.CSU2(𝔽3)
C1C2Q8C3×Q8Q8⋊C9Q8⋊3- 1+2 — C32.CSU2(𝔽3)
Q8⋊C9 — C32.CSU2(𝔽3)
C1C2

Generators and relations for C32.CSU2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=1, d2=f2=c2, e3=fbf-1=b-1, eae-1=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, be=eb, dcd-1=fdf-1=c-1, ece-1=cd, fcf-1=c2d, ede-1=c, fef-1=be2 >

3C3
3C4
18C4
3C6
4C9
8C9
9C8
9Q8
3C12
3C12
6C12
6Dic3
18C12
4C18
8C18
43- 1+2
9Q16
3Dic6
3C3×Q8
3C3⋊C8
9C24
9C3×Q8
3C3×C12
4Dic9
6C3×Dic3
4C2×3- 1+2
3C3⋊Q16
9C3×Q16
2Q8⋊C9
3C3×C3⋊C8
3C3×Dic6
4C9⋊C12
3C3×C3⋊Q16

Character table of C32.CSU2(𝔽3)

 class 123A3B3C4A4B6A6B6C8A8B9A9B9C12A12B12C12D12E12F12G18A18B18C24A24B24C24D
 size 11233636233181824242466121212363624242418181818
ρ111111111111111111111111111111    trivial
ρ2111111-1111-1-111111111-1-1111-1-1-1-1    linear of order 2
ρ3111ζ32ζ31-11ζ3ζ32-1-1ζ32ζ31ζ32ζ31ζ32ζ3ζ65ζ6ζ32ζ31ζ6ζ65ζ6ζ65    linear of order 6
ρ4111ζ32ζ3111ζ3ζ3211ζ32ζ31ζ32ζ31ζ32ζ3ζ3ζ32ζ32ζ31ζ32ζ3ζ32ζ3    linear of order 3
ρ5111ζ3ζ32111ζ32ζ311ζ3ζ321ζ3ζ321ζ3ζ32ζ32ζ3ζ3ζ321ζ3ζ32ζ3ζ32    linear of order 3
ρ6111ζ3ζ321-11ζ32ζ3-1-1ζ3ζ321ζ3ζ321ζ3ζ32ζ6ζ65ζ3ζ321ζ65ζ6ζ65ζ6    linear of order 6
ρ7222222022200-1-1-12222200-1-1-10000    orthogonal lifted from S3
ρ82-222200-2-2-22-2-1-1-100000001112-2-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ92-222200-2-2-2-22-1-1-10000000111-222-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ10222-1--3-1+-3202-1+-3-1--300ζ6ζ65-1-1--3-1+-32-1--3-1+-300ζ6ζ65-10000    complex lifted from C3×S3
ρ11222-1+-3-1--3202-1--3-1+-300ζ65ζ6-1-1+-3-1--32-1+-3-1--300ζ65ζ6-10000    complex lifted from C3×S3
ρ122-22-1--3-1+-300-21--31+-32-2ζ6ζ65-10000000ζ32ζ3183ζ328ζ3287ζ385ζ387ζ3285ζ3283ζ38ζ3    complex lifted from C3×CSU2(𝔽3)
ρ132-22-1+-3-1--300-21+-31--3-22ζ65ζ6-10000000ζ3ζ32187ζ385ζ383ζ328ζ3283ζ38ζ387ζ3285ζ32    complex lifted from C3×CSU2(𝔽3)
ρ142-22-1--3-1+-300-21--31+-3-22ζ6ζ65-10000000ζ32ζ3187ζ3285ζ3283ζ38ζ383ζ328ζ3287ζ385ζ3    complex lifted from C3×CSU2(𝔽3)
ρ152-22-1+-3-1--300-21+-31--32-2ζ65ζ6-10000000ζ3ζ32183ζ38ζ387ζ3285ζ3287ζ385ζ383ζ328ζ32    complex lifted from C3×CSU2(𝔽3)
ρ1633333-1-133311000-1-1-1-1-1-1-10001111    orthogonal lifted from S4
ρ1733333-11333-1-1000-1-1-1-1-111000-1-1-1-1    orthogonal lifted from S4
ρ18333-3+3-3/2-3-3-3/2-1-13-3-3-3/2-3+3-3/211000ζ65ζ6-1ζ65ζ6ζ6ζ65000ζ3ζ32ζ3ζ32    complex lifted from C3×S4
ρ19333-3-3-3/2-3+3-3/2-113-3+3-3/2-3-3-3/2-1-1000ζ6ζ65-1ζ6ζ65ζ3ζ32000ζ6ζ65ζ6ζ65    complex lifted from C3×S4
ρ20333-3-3-3/2-3+3-3/2-1-13-3+3-3/2-3-3-3/211000ζ6ζ65-1ζ6ζ65ζ65ζ6000ζ32ζ3ζ32ζ3    complex lifted from C3×S4
ρ21333-3+3-3/2-3-3-3/2-113-3-3-3/2-3+3-3/2-1-1000ζ65ζ6-1ζ65ζ6ζ32ζ3000ζ65ζ6ζ65ζ6    complex lifted from C3×S4
ρ224-444400-4-4-4001110000000-1-1-10000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ234-44-2+2-3-2-2-300-42+2-32-2-300ζ3ζ3210000000ζ65ζ6-10000    complex lifted from C3×CSU2(𝔽3)
ρ244-44-2-2-3-2+2-300-42-2-32+2-300ζ32ζ310000000ζ6ζ65-10000    complex lifted from C3×CSU2(𝔽3)
ρ2566-30060-3000000000-300000000000    orthogonal lifted from C9⋊C6
ρ2666-300-20-30000000441-2-2000000000    orthogonal lifted from C32.S4
ρ2766-300-20-30000000-2+2-3-2-2-311--31+-3000000000    complex lifted from C32.S4
ρ2866-300-20-30000000-2-2-3-2+2-311+-31--3000000000    complex lifted from C32.S4
ρ2912-12-600006000000000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C32.CSU2(𝔽3)
On 144 points
Generators in S144
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(29 35 32)(30 33 36)(38 44 41)(39 42 45)(46 49 52)(48 54 51)(56 62 59)(57 60 63)(65 71 68)(66 69 72)(73 79 76)(74 77 80)(82 88 85)(83 86 89)(91 94 97)(93 99 96)(100 106 103)(101 104 107)(109 115 112)(110 113 116)(119 125 122)(120 123 126)(127 130 133)(129 135 132)(136 142 139)(137 140 143)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)(109 115 112)(110 116 113)(111 117 114)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)(136 142 139)(137 143 140)(138 144 141)
(1 87 131 102)(2 109 132 99)(3 77 133 123)(4 90 134 105)(5 112 135 93)(6 80 127 126)(7 84 128 108)(8 115 129 96)(9 74 130 120)(10 63 143 39)(11 67 144 21)(12 35 136 54)(13 57 137 42)(14 70 138 24)(15 29 139 48)(16 60 140 45)(17 64 141 27)(18 32 142 51)(19 62 65 38)(20 52 66 33)(22 56 68 41)(23 46 69 36)(25 59 71 44)(26 49 72 30)(28 58 47 43)(31 61 50 37)(34 55 53 40)(73 85 119 100)(75 98 121 117)(76 88 122 103)(78 92 124 111)(79 82 125 106)(81 95 118 114)(83 113 107 94)(86 116 101 97)(89 110 104 91)
(1 75 131 121)(2 88 132 103)(3 110 133 91)(4 78 134 124)(5 82 135 106)(6 113 127 94)(7 81 128 118)(8 85 129 100)(9 116 130 97)(10 33 143 52)(11 55 144 40)(12 68 136 22)(13 36 137 46)(14 58 138 43)(15 71 139 25)(16 30 140 49)(17 61 141 37)(18 65 142 19)(20 63 66 39)(21 53 67 34)(23 57 69 42)(24 47 70 28)(26 60 72 45)(27 50 64 31)(29 59 48 44)(32 62 51 38)(35 56 54 41)(73 96 119 115)(74 86 120 101)(76 99 122 109)(77 89 123 104)(79 93 125 112)(80 83 126 107)(84 114 108 95)(87 117 102 98)(90 111 105 92)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 14 131 138)(2 13 132 137)(3 12 133 136)(4 11 134 144)(5 10 135 143)(6 18 127 142)(7 17 128 141)(8 16 129 140)(9 15 130 139)(19 126 65 80)(20 125 66 79)(21 124 67 78)(22 123 68 77)(23 122 69 76)(24 121 70 75)(25 120 71 74)(26 119 72 73)(27 118 64 81)(28 117 47 98)(29 116 48 97)(30 115 49 96)(31 114 50 95)(32 113 51 94)(33 112 52 93)(34 111 53 92)(35 110 54 91)(36 109 46 99)(37 108 61 84)(38 107 62 83)(39 106 63 82)(40 105 55 90)(41 104 56 89)(42 103 57 88)(43 102 58 87)(44 101 59 86)(45 100 60 85)

G:=sub<Sym(144)| (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,49,52)(48,54,51)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,79,76)(74,77,80)(82,88,85)(83,86,89)(91,94,97)(93,99,96)(100,106,103)(101,104,107)(109,115,112)(110,113,116)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(136,142,139)(137,140,143), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141), (1,87,131,102)(2,109,132,99)(3,77,133,123)(4,90,134,105)(5,112,135,93)(6,80,127,126)(7,84,128,108)(8,115,129,96)(9,74,130,120)(10,63,143,39)(11,67,144,21)(12,35,136,54)(13,57,137,42)(14,70,138,24)(15,29,139,48)(16,60,140,45)(17,64,141,27)(18,32,142,51)(19,62,65,38)(20,52,66,33)(22,56,68,41)(23,46,69,36)(25,59,71,44)(26,49,72,30)(28,58,47,43)(31,61,50,37)(34,55,53,40)(73,85,119,100)(75,98,121,117)(76,88,122,103)(78,92,124,111)(79,82,125,106)(81,95,118,114)(83,113,107,94)(86,116,101,97)(89,110,104,91), (1,75,131,121)(2,88,132,103)(3,110,133,91)(4,78,134,124)(5,82,135,106)(6,113,127,94)(7,81,128,118)(8,85,129,100)(9,116,130,97)(10,33,143,52)(11,55,144,40)(12,68,136,22)(13,36,137,46)(14,58,138,43)(15,71,139,25)(16,30,140,49)(17,61,141,37)(18,65,142,19)(20,63,66,39)(21,53,67,34)(23,57,69,42)(24,47,70,28)(26,60,72,45)(27,50,64,31)(29,59,48,44)(32,62,51,38)(35,56,54,41)(73,96,119,115)(74,86,120,101)(76,99,122,109)(77,89,123,104)(79,93,125,112)(80,83,126,107)(84,114,108,95)(87,117,102,98)(90,111,105,92), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,14,131,138)(2,13,132,137)(3,12,133,136)(4,11,134,144)(5,10,135,143)(6,18,127,142)(7,17,128,141)(8,16,129,140)(9,15,130,139)(19,126,65,80)(20,125,66,79)(21,124,67,78)(22,123,68,77)(23,122,69,76)(24,121,70,75)(25,120,71,74)(26,119,72,73)(27,118,64,81)(28,117,47,98)(29,116,48,97)(30,115,49,96)(31,114,50,95)(32,113,51,94)(33,112,52,93)(34,111,53,92)(35,110,54,91)(36,109,46,99)(37,108,61,84)(38,107,62,83)(39,106,63,82)(40,105,55,90)(41,104,56,89)(42,103,57,88)(43,102,58,87)(44,101,59,86)(45,100,60,85)>;

G:=Group( (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,49,52)(48,54,51)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,79,76)(74,77,80)(82,88,85)(83,86,89)(91,94,97)(93,99,96)(100,106,103)(101,104,107)(109,115,112)(110,113,116)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(136,142,139)(137,140,143), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141), (1,87,131,102)(2,109,132,99)(3,77,133,123)(4,90,134,105)(5,112,135,93)(6,80,127,126)(7,84,128,108)(8,115,129,96)(9,74,130,120)(10,63,143,39)(11,67,144,21)(12,35,136,54)(13,57,137,42)(14,70,138,24)(15,29,139,48)(16,60,140,45)(17,64,141,27)(18,32,142,51)(19,62,65,38)(20,52,66,33)(22,56,68,41)(23,46,69,36)(25,59,71,44)(26,49,72,30)(28,58,47,43)(31,61,50,37)(34,55,53,40)(73,85,119,100)(75,98,121,117)(76,88,122,103)(78,92,124,111)(79,82,125,106)(81,95,118,114)(83,113,107,94)(86,116,101,97)(89,110,104,91), (1,75,131,121)(2,88,132,103)(3,110,133,91)(4,78,134,124)(5,82,135,106)(6,113,127,94)(7,81,128,118)(8,85,129,100)(9,116,130,97)(10,33,143,52)(11,55,144,40)(12,68,136,22)(13,36,137,46)(14,58,138,43)(15,71,139,25)(16,30,140,49)(17,61,141,37)(18,65,142,19)(20,63,66,39)(21,53,67,34)(23,57,69,42)(24,47,70,28)(26,60,72,45)(27,50,64,31)(29,59,48,44)(32,62,51,38)(35,56,54,41)(73,96,119,115)(74,86,120,101)(76,99,122,109)(77,89,123,104)(79,93,125,112)(80,83,126,107)(84,114,108,95)(87,117,102,98)(90,111,105,92), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,14,131,138)(2,13,132,137)(3,12,133,136)(4,11,134,144)(5,10,135,143)(6,18,127,142)(7,17,128,141)(8,16,129,140)(9,15,130,139)(19,126,65,80)(20,125,66,79)(21,124,67,78)(22,123,68,77)(23,122,69,76)(24,121,70,75)(25,120,71,74)(26,119,72,73)(27,118,64,81)(28,117,47,98)(29,116,48,97)(30,115,49,96)(31,114,50,95)(32,113,51,94)(33,112,52,93)(34,111,53,92)(35,110,54,91)(36,109,46,99)(37,108,61,84)(38,107,62,83)(39,106,63,82)(40,105,55,90)(41,104,56,89)(42,103,57,88)(43,102,58,87)(44,101,59,86)(45,100,60,85) );

G=PermutationGroup([[(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(29,35,32),(30,33,36),(38,44,41),(39,42,45),(46,49,52),(48,54,51),(56,62,59),(57,60,63),(65,71,68),(66,69,72),(73,79,76),(74,77,80),(82,88,85),(83,86,89),(91,94,97),(93,99,96),(100,106,103),(101,104,107),(109,115,112),(110,113,116),(119,125,122),(120,123,126),(127,130,133),(129,135,132),(136,142,139),(137,140,143)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105),(109,115,112),(110,116,113),(111,117,114),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132),(136,142,139),(137,143,140),(138,144,141)], [(1,87,131,102),(2,109,132,99),(3,77,133,123),(4,90,134,105),(5,112,135,93),(6,80,127,126),(7,84,128,108),(8,115,129,96),(9,74,130,120),(10,63,143,39),(11,67,144,21),(12,35,136,54),(13,57,137,42),(14,70,138,24),(15,29,139,48),(16,60,140,45),(17,64,141,27),(18,32,142,51),(19,62,65,38),(20,52,66,33),(22,56,68,41),(23,46,69,36),(25,59,71,44),(26,49,72,30),(28,58,47,43),(31,61,50,37),(34,55,53,40),(73,85,119,100),(75,98,121,117),(76,88,122,103),(78,92,124,111),(79,82,125,106),(81,95,118,114),(83,113,107,94),(86,116,101,97),(89,110,104,91)], [(1,75,131,121),(2,88,132,103),(3,110,133,91),(4,78,134,124),(5,82,135,106),(6,113,127,94),(7,81,128,118),(8,85,129,100),(9,116,130,97),(10,33,143,52),(11,55,144,40),(12,68,136,22),(13,36,137,46),(14,58,138,43),(15,71,139,25),(16,30,140,49),(17,61,141,37),(18,65,142,19),(20,63,66,39),(21,53,67,34),(23,57,69,42),(24,47,70,28),(26,60,72,45),(27,50,64,31),(29,59,48,44),(32,62,51,38),(35,56,54,41),(73,96,119,115),(74,86,120,101),(76,99,122,109),(77,89,123,104),(79,93,125,112),(80,83,126,107),(84,114,108,95),(87,117,102,98),(90,111,105,92)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,14,131,138),(2,13,132,137),(3,12,133,136),(4,11,134,144),(5,10,135,143),(6,18,127,142),(7,17,128,141),(8,16,129,140),(9,15,130,139),(19,126,65,80),(20,125,66,79),(21,124,67,78),(22,123,68,77),(23,122,69,76),(24,121,70,75),(25,120,71,74),(26,119,72,73),(27,118,64,81),(28,117,47,98),(29,116,48,97),(30,115,49,96),(31,114,50,95),(32,113,51,94),(33,112,52,93),(34,111,53,92),(35,110,54,91),(36,109,46,99),(37,108,61,84),(38,107,62,83),(39,106,63,82),(40,105,55,90),(41,104,56,89),(42,103,57,88),(43,102,58,87),(44,101,59,86),(45,100,60,85)]])

Matrix representation of C32.CSU2(𝔽3) in GL8(𝔽73)

640000000
064000000
00100000
00010000
00330727200
00001000
00000001
0050007272
,
10000000
01000000
00120000
0035710000
000220100
003322727200
000520001
00552007272
,
5219000000
1921000000
00100000
00010000
00001000
00000100
00000010
00000001
,
072000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001
,
1635000000
3656000000
005100200
00330727100
0024002201
002900227272
0049005200
0049105200
,
4445000000
429000000
0039670000
0010340000
0057700345
00727004270
00486334500
00163427000

G:=sub<GL(8,GF(73))| [64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,33,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,35,0,33,0,5,0,0,2,71,22,22,52,52,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72],[52,19,0,0,0,0,0,0,19,21,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,36,0,0,0,0,0,0,35,56,0,0,0,0,0,0,0,0,51,33,24,29,49,49,0,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,0,0,2,71,22,22,52,52,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0],[44,4,0,0,0,0,0,0,45,29,0,0,0,0,0,0,0,0,39,10,57,72,48,1,0,0,67,34,7,7,63,63,0,0,0,0,0,0,3,42,0,0,0,0,0,0,45,70,0,0,0,0,3,42,0,0,0,0,0,0,45,70,0,0] >;

C32.CSU2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2.{\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2.CSU(2,3)");
// GroupNames label

G:=SmallGroup(432,243);
// by ID

G=gap.SmallGroup(432,243);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,632,261,142,1011,3784,1908,172,2273,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=1,d^2=f^2=c^2,e^3=f*b*f^-1=b^-1,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=f*d*f^-1=c^-1,e*c*e^-1=c*d,f*c*f^-1=c^2*d,e*d*e^-1=c,f*e*f^-1=b*e^2>;
// generators/relations

Export

Subgroup lattice of C32.CSU2(𝔽3) in TeX
Character table of C32.CSU2(𝔽3) in TeX

׿
×
𝔽